3.22.52 \(\int \frac {(3+5 x)^2}{(1-2 x)^{5/2} (2+3 x)} \, dx\) [2152]

Optimal. Leaf size=54 \[ \frac {121}{42 (1-2 x)^{3/2}}-\frac {407}{98 \sqrt {1-2 x}}-\frac {2 \tanh ^{-1}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )}{49 \sqrt {21}} \]

[Out]

121/42/(1-2*x)^(3/2)-2/1029*arctanh(1/7*21^(1/2)*(1-2*x)^(1/2))*21^(1/2)-407/98/(1-2*x)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.02, antiderivative size = 54, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {89, 65, 212} \begin {gather*} -\frac {407}{98 \sqrt {1-2 x}}+\frac {121}{42 (1-2 x)^{3/2}}-\frac {2 \tanh ^{-1}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )}{49 \sqrt {21}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(3 + 5*x)^2/((1 - 2*x)^(5/2)*(2 + 3*x)),x]

[Out]

121/(42*(1 - 2*x)^(3/2)) - 407/(98*Sqrt[1 - 2*x]) - (2*ArcTanh[Sqrt[3/7]*Sqrt[1 - 2*x]])/(49*Sqrt[21])

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 89

Int[(((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_))/((a_.) + (b_.)*(x_)), x_Symbol] :> Int[ExpandIntegr
and[(e + f*x)^FractionalPart[p], (c + d*x)^n*((e + f*x)^IntegerPart[p]/(a + b*x)), x], x] /; FreeQ[{a, b, c, d
, e, f}, x] && IGtQ[n, 0] && LtQ[p, -1] && FractionQ[p]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin {align*} \int \frac {(3+5 x)^2}{(1-2 x)^{5/2} (2+3 x)} \, dx &=\int \left (\frac {121}{14 (1-2 x)^{5/2}}-\frac {407}{98 (1-2 x)^{3/2}}+\frac {1}{49 \sqrt {1-2 x} (2+3 x)}\right ) \, dx\\ &=\frac {121}{42 (1-2 x)^{3/2}}-\frac {407}{98 \sqrt {1-2 x}}+\frac {1}{49} \int \frac {1}{\sqrt {1-2 x} (2+3 x)} \, dx\\ &=\frac {121}{42 (1-2 x)^{3/2}}-\frac {407}{98 \sqrt {1-2 x}}-\frac {1}{49} \text {Subst}\left (\int \frac {1}{\frac {7}{2}-\frac {3 x^2}{2}} \, dx,x,\sqrt {1-2 x}\right )\\ &=\frac {121}{42 (1-2 x)^{3/2}}-\frac {407}{98 \sqrt {1-2 x}}-\frac {2 \tanh ^{-1}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )}{49 \sqrt {21}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.09, size = 46, normalized size = 0.85 \begin {gather*} \frac {\frac {154 (-17+111 x)}{(1-2 x)^{3/2}}-4 \sqrt {21} \tanh ^{-1}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )}{2058} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(3 + 5*x)^2/((1 - 2*x)^(5/2)*(2 + 3*x)),x]

[Out]

((154*(-17 + 111*x))/(1 - 2*x)^(3/2) - 4*Sqrt[21]*ArcTanh[Sqrt[3/7]*Sqrt[1 - 2*x]])/2058

________________________________________________________________________________________

Maple [A]
time = 0.13, size = 38, normalized size = 0.70

method result size
derivativedivides \(\frac {121}{42 \left (1-2 x \right )^{\frac {3}{2}}}-\frac {2 \arctanh \left (\frac {\sqrt {21}\, \sqrt {1-2 x}}{7}\right ) \sqrt {21}}{1029}-\frac {407}{98 \sqrt {1-2 x}}\) \(38\)
default \(\frac {121}{42 \left (1-2 x \right )^{\frac {3}{2}}}-\frac {2 \arctanh \left (\frac {\sqrt {21}\, \sqrt {1-2 x}}{7}\right ) \sqrt {21}}{1029}-\frac {407}{98 \sqrt {1-2 x}}\) \(38\)
trager \(\frac {11 \left (111 x -17\right ) \sqrt {1-2 x}}{147 \left (-1+2 x \right )^{2}}+\frac {\RootOf \left (\textit {\_Z}^{2}-21\right ) \ln \left (\frac {3 \RootOf \left (\textit {\_Z}^{2}-21\right ) x -5 \RootOf \left (\textit {\_Z}^{2}-21\right )+21 \sqrt {1-2 x}}{2+3 x}\right )}{1029}\) \(67\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((3+5*x)^2/(1-2*x)^(5/2)/(2+3*x),x,method=_RETURNVERBOSE)

[Out]

121/42/(1-2*x)^(3/2)-2/1029*arctanh(1/7*21^(1/2)*(1-2*x)^(1/2))*21^(1/2)-407/98/(1-2*x)^(1/2)

________________________________________________________________________________________

Maxima [A]
time = 0.66, size = 51, normalized size = 0.94 \begin {gather*} \frac {1}{1029} \, \sqrt {21} \log \left (-\frac {\sqrt {21} - 3 \, \sqrt {-2 \, x + 1}}{\sqrt {21} + 3 \, \sqrt {-2 \, x + 1}}\right ) + \frac {11 \, {\left (111 \, x - 17\right )}}{147 \, {\left (-2 \, x + 1\right )}^{\frac {3}{2}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+5*x)^2/(1-2*x)^(5/2)/(2+3*x),x, algorithm="maxima")

[Out]

1/1029*sqrt(21)*log(-(sqrt(21) - 3*sqrt(-2*x + 1))/(sqrt(21) + 3*sqrt(-2*x + 1))) + 11/147*(111*x - 17)/(-2*x
+ 1)^(3/2)

________________________________________________________________________________________

Fricas [A]
time = 0.68, size = 68, normalized size = 1.26 \begin {gather*} \frac {\sqrt {21} {\left (4 \, x^{2} - 4 \, x + 1\right )} \log \left (\frac {3 \, x + \sqrt {21} \sqrt {-2 \, x + 1} - 5}{3 \, x + 2}\right ) + 77 \, {\left (111 \, x - 17\right )} \sqrt {-2 \, x + 1}}{1029 \, {\left (4 \, x^{2} - 4 \, x + 1\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+5*x)^2/(1-2*x)^(5/2)/(2+3*x),x, algorithm="fricas")

[Out]

1/1029*(sqrt(21)*(4*x^2 - 4*x + 1)*log((3*x + sqrt(21)*sqrt(-2*x + 1) - 5)/(3*x + 2)) + 77*(111*x - 17)*sqrt(-
2*x + 1))/(4*x^2 - 4*x + 1)

________________________________________________________________________________________

Sympy [A]
time = 19.52, size = 83, normalized size = 1.54 \begin {gather*} \frac {2 \left (\begin {cases} - \frac {\sqrt {21} \operatorname {acoth}{\left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} \right )}}{21} & \text {for}\: x < - \frac {2}{3} \\- \frac {\sqrt {21} \operatorname {atanh}{\left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} \right )}}{21} & \text {for}\: x > - \frac {2}{3} \end {cases}\right )}{49} - \frac {407}{98 \sqrt {1 - 2 x}} + \frac {121}{42 \left (1 - 2 x\right )^{\frac {3}{2}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+5*x)**2/(1-2*x)**(5/2)/(2+3*x),x)

[Out]

2*Piecewise((-sqrt(21)*acoth(sqrt(21)*sqrt(1 - 2*x)/7)/21, x < -2/3), (-sqrt(21)*atanh(sqrt(21)*sqrt(1 - 2*x)/
7)/21, x > -2/3))/49 - 407/(98*sqrt(1 - 2*x)) + 121/(42*(1 - 2*x)**(3/2))

________________________________________________________________________________________

Giac [A]
time = 1.30, size = 61, normalized size = 1.13 \begin {gather*} \frac {1}{1029} \, \sqrt {21} \log \left (\frac {{\left | -2 \, \sqrt {21} + 6 \, \sqrt {-2 \, x + 1} \right |}}{2 \, {\left (\sqrt {21} + 3 \, \sqrt {-2 \, x + 1}\right )}}\right ) - \frac {11 \, {\left (111 \, x - 17\right )}}{147 \, {\left (2 \, x - 1\right )} \sqrt {-2 \, x + 1}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+5*x)^2/(1-2*x)^(5/2)/(2+3*x),x, algorithm="giac")

[Out]

1/1029*sqrt(21)*log(1/2*abs(-2*sqrt(21) + 6*sqrt(-2*x + 1))/(sqrt(21) + 3*sqrt(-2*x + 1))) - 11/147*(111*x - 1
7)/((2*x - 1)*sqrt(-2*x + 1))

________________________________________________________________________________________

Mupad [B]
time = 1.20, size = 32, normalized size = 0.59 \begin {gather*} \frac {\frac {407\,x}{49}-\frac {187}{147}}{{\left (1-2\,x\right )}^{3/2}}-\frac {2\,\sqrt {21}\,\mathrm {atanh}\left (\frac {\sqrt {21}\,\sqrt {1-2\,x}}{7}\right )}{1029} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((5*x + 3)^2/((1 - 2*x)^(5/2)*(3*x + 2)),x)

[Out]

((407*x)/49 - 187/147)/(1 - 2*x)^(3/2) - (2*21^(1/2)*atanh((21^(1/2)*(1 - 2*x)^(1/2))/7))/1029

________________________________________________________________________________________